OKLAHOMA STATE UNIVERSITY SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERIN G

ECEN 4413 Controls II Fall 1997 Final Exam

Name :			
Student ID:		 	-

E-Mail Address:

<u>Problem 1</u>: Using the block diagram reduction technique, find the plant transfer function $G_p(s)$.

Problem 2:

Plot the approximate Bode magnitude and Bode phase plots for the transfer functions:

$$G(s) = \frac{20(s^2 + 2s + 1)}{s(s + 0.1)(s + 10)}.$$

And determine the analytical expression for y(t) at $\omega = 1$ if the input is $r(t) = 4\cos\omega t$ (**not** $\sin\omega t$). <u>Justify</u> your answer.

Problem 3:

Consider the closed-loop control system described by
$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ -b_3 & 0 & 1 \\ 0 & -b_2 & -b_1 \end{bmatrix} x + \begin{bmatrix} 1 \\ b_1 \\ b_3 \end{bmatrix} r$$

$$y = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} x$$

Determine its stability criteria.

<u>Problem 4</u>: Find the region of $K \in R$ in G(s) for which the unity feedback control system is stable

$$G(s) = \frac{K(s^2 + 15s + 55)}{s(s^2 + s + 10)}.$$

Problem 5:

Consider the state feedback control system shown below, and determine the feedback coefficients (k_1 and k_2) so that the poles of the closed-loop control system are located at -5 and -7.

